首页> 外文OA文献 >Robustness of Link-prediction Algorithm Based on Similarity and Application to Biological Networks
【2h】

Robustness of Link-prediction Algorithm Based on Similarity and Application to Biological Networks

机译:基于相似度和相似度的链接预测算法的鲁棒性   生物网络的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many algorithms have been proposed to predict missing links in a variety ofreal networks. These studies focus on mainly both accuracy and efficiency ofthese algorithms. However, little attention is paid to their robustness againsteither noise or irrationality of a link existing in almost all of realnetworks. In this paper, we investigate the robustness of several typicalnode-similarity-based algorithms and find that these algorithms are sensitiveto the strength of noise. Moreover, we find that it also depends on networks'structure properties, especially on network efficiency, clustering coefficientand average degree. In addition, we make an attempt to enhance the robustnessby using link weighting method to transform un-weighted network to weighted oneand then make use of weights of links to characterize their reliability. Theresult shows that proper link weighting scheme can enhance both robustness andaccuracy of these algorithms significantly in biological networks while itbrings little computational effort.
机译:已经提出了许多算法来预测各种实际网络中的丢失链接。这些研究主要集中在这些算法的准确性和效率上。但是,几乎没有注意到它们针对几乎所有真实网络中存在的链路的噪声或不合理性的鲁棒性。在本文中,我们研究了几种典型的基于节点相似性的算法的鲁棒性,并发现这些算法对噪声强度敏感。此外,我们发现它还取决于网络的结构特性,尤其是网络效率,聚类系数和平均程度。另外,我们尝试通过使用链路加权方法将未加权的网络转换为加权的网络,然后利用链路的权重来表征其可靠性,从而增强鲁棒性。结果表明,适当的链路加权方案可以在生物网络中显着提高这些算法的鲁棒性和准确性,同时却减少了计算量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号